skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LASKOWSKI, MICHAEL C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove various results around indiscernibles in monadically NIP theories. First, we provide several characterizations of monadic NIP in terms of indiscernibles, mirroring previous characterizations in terms of the behavior of finite satisfiability. Second, we study (monadic) distality in hereditary classes and complete theories. Here, via finite combinatorics, we prove a result implying that every planar graph admits a distal expansion. Finally, we prove a result implying that no monadically NIP theory interprets an infinite group, and note an example of a (monadically) stable theory with no distal expansion that does not interpret an infinite group. 
    more » « less
    Free, publicly-accessible full text available July 25, 2026
  2. For an $$\aleph_1$$-categorical atomic class, we clarify the space of types over the unique model of size $$\aleph_1$$. Using these results, we prove that if such a class has a model of size $$\beth_1^+$$ then it is $$\omega$$-stable. 
    more » « less
  3. Abstract We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $$M^{eq}$$ has a Borel complete reduct, and if a theory T is not $$\omega $$ -stable, then the elementary diagram of some countable model of T has a Borel complete reduct. 
    more » « less
  4. Abstract We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $$N \supseteq M$$ such that $$2^{\aleph _0}$$ many structures are bi-embeddable with N . The proof proceeds by a case division based on mutual algebraicity. 
    more » « less
  5. Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: see text] is a root of unity, then [Formula: see text] is superstable for any [Formula: see text]. 
    more » « less
  6. We define an easily verifiable notion of an atomic formula having uniformly bounded arrays in a structure M. We prove that if is a complete L-theory, then T is mutually algebraic if and only if there is some model M of T for which every atomic formula has uniformly bounded arrays. Moreover, an incomplete theory T is mutually algebraic if and only if every atomic formula has uniformly bounded arrays in every model M of T. 
    more » « less